Electric Drives and Controls

Hydraulics

Linear Motion and Assembly Technologies

Pneumatics

Sorvice

Linear Modules for Food & Packaging (MKR 20-80)

R310EN 2406 (2009.02)

The Drive & Control Company

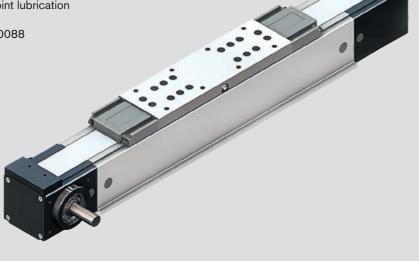
Linear Motion and Assembly Technologies

Ball Rail Systems Roller Rail Systems Linear Bushings and Shafts Ball Screw Drives Linear Motion Systems Basic Mechanical Elements Manual Production Systems Transfer Systems

www.boschrexroth.com/brl

Linear Modules for Food & Packaging

Product Description	4
Technical Data	4
Performance Data	7
Components and Ordering Data	8
Dimensions	10
Mounting	12
Motors	13
Lubrication	14
Documentation	14


Product Description

Outstanding features

Linear Modules for Food & Packaging have been designed for use in environments requiring a high level of hygiene and ease of cleaning. They are equipped with a Ball Rail System and toothed belt drive and offer an outstanding combination of high performance and compact dimensions.

Linear Modules for Food & Packaging consist of:

- a compact, anodized aluminum profile frame with no slots, resulting in an especially smooth, easy-to-clean surface
- integrated Rexroth Ball Rail System
- carriage with sealable threads and one-point lubrication
- pre-tensioned toothed belt
- stainless steel sealing strip per DIN EN 10088
- AC servomotor
- gear reducer for motor attachment
- control units

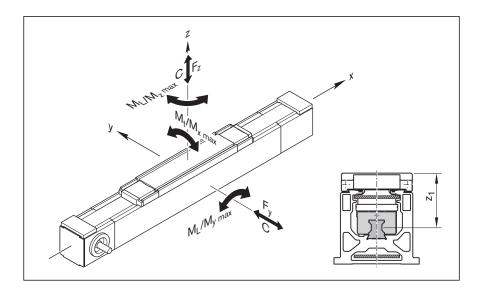
Technical Data

General technical data

Linear module	Carriage length L _{ca}	Dynamic load capacity	Dynamic load moments		Moved mass of system m _{ca}	Length		Planar mo	oment
						minimum	maximum		
		С	Mt	ML		L _{min} 1)	L _{max}	l _x	l _y
	(mm)	(N)	(Nm)	(Nm)	(kg)	(mm)	(mm)	(cm ⁴)	(cm ⁴)
MKR 20-80	190	17420	221	121	1.4	370	6000	180	211
	260	28300	359	1840	2.2	430			

¹⁾ For a theoretical stroke of 100 mm and excess travel of 30 mm at each end

Linear module	Carriage length L _{ca}	Maximum permissil	ole forces	Maximum permissible moments					
	(mm)	F _{z max} (N)	F _{y max} (N)	M _{x max} (Nm)	M _{y max} (Nm)	M _{z max} (Nm)			
MKR 20-80	190	8 700	8 700	111	60	60			
	260	14150	14150	180	919	919			


Technical Data

Note on dynamic load capacities and moments

Determination of the dynamic load capacities and moments is based on a travel life of 100,000 m.

Often only 50,000 m are actually stipulated.

For comparison: Multiply values $C,\,M_t$ and M_L from the table by 1.26.

Combined equivalent load on bearing of the linear guide

	z ₁ (mm)
MKR 20-80	59.6

$$F_{comb} = \left| F_y \right| + \left| F_z \right| + C \cdot \frac{\left| M_x \right|}{M_t} + C \cdot \frac{\left| M_y \right|}{M_L} + C \cdot \frac{\left| M_z \right|}{M_L}$$

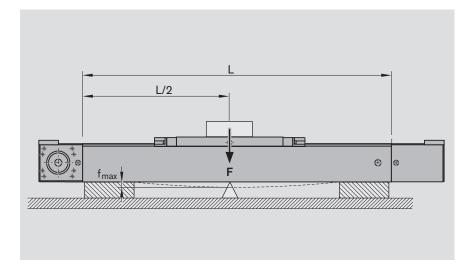
С	=	dynamic load capacity	(N)	M_x	_	torsional moment	
F_{comb}	=	combined equivalent load				about the x-axis	(Nm)
		on bearing	(N)	M_y	=	torsional moment	
F_y	=	force in y-direction	(N)			about the y-axis	(Nm)
F _z	=	force in z-direction	(N)	M_z	=	torsional moment	
M_L	=	dynamic longitudinal moment				about the z-axis	(Nm)
		load capacity	(Nm)	z_1	=	application point of the	
M_t	=	dynamic torsional moment				effective force	(mm)
		load capacity	(Nm)				

Drive dataToothed belt stretch

$$\Delta_{\rm L} = ({\rm F}\cdot{\rm L})/{\rm c}_{\rm spec}$$

Linear module	Gear reducer	Maximum drive	Lead	Belt dat	a				
	ratio	torque	constant						
									0 15
	Į	M_a		Belt	Width	Tooth	Max. belt drive	Belt elasticity	Specific
				type		pitch	transmission	limit	spring rate
							force		c_spec
		(Nm)	(mm/rev)		(mm)	(mm)	(N)	(N)	(N)
MKR 20-80	1	32.0	205	AT 5	50	5	980	3500	0.875 · 10 ⁶
	1 with keyway	27.0	205						
	3	10.7	68.35	1					
	5	6.4	41.01	1					
	10	3.2	20.51						

Technical Data


Deflection

A particular feature of Linear Modules is that they can be installed as cantilevered axes.

Deflection must, however, be taken into consideration, because it limits the possible load.

If the maximum permissible deflection is exceeded, additional supports must be provided.

⚠ Do not mount or support the Linear Module by the end blocks or end enclosures!

Maximum permissible deflection f_{max}

The maximum permissible deflection f_{max} depends on the length L and the load F.

f_{max} must not be exceeded!

If high system dynamics are required, supports must be provided every 300 to 600 mm.

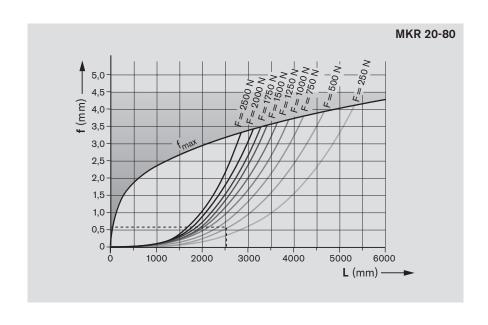
Example

Linear Module MKR 20-80:

L = 2500 mm

F = 500 N

From chart 20-80:


f = 0.6 mm

 $f_{max} = 3.2 \text{ mm}$

The deflection f lies well below the maximum permissible deflection f_{maxr} so no additional supports are required.

The chart is valid for:

- both ends firmly fixed
 (200 to 250 mm per end)
- 6 to 8 screws per side
- solid mounting base

Performance Data

Performance values for horizontal operation

With servo motor MSK 050C and ECODRIVE Cs controller Connection voltage: 3 x 400 V

The tables contain performance data examples for different gearbox-motor-controller combinations. They are intended to serve as a guide for selection; exact values must be calculated based on individual cases.

Gear reducer ratio		i = 3					i = 5					i = 10				
Mass m _{ex}	(kg)	4	6	8	10	12	10	15	20	25	35	30	40	50	60	80
Acceleration time t	(ms)	100	116	135	152	167	125	150	176	200	250	200	227	254	276	333
Acceleration distance s	(mm)	250	291	338	379	417	188	225	265	300	402	150	171	191	209	250
Acceleration a	(m/s ²)	50	43	37	33	30	24	20	17	15	9.8	7.5	6.6	5.9	5.4	4.5
Travel speed v	(m/s)					5.0					2.8					1.5
Repeatability ±	(mm)		0.1				0.1				0.1					

With servo motor MSK 040C and DKC controller¹⁾

Connection voltage: 3 x 400 V

Gear reducer ratio		i = 3				i = 5					i = 10				
Mass m _{ex}	(kg)	1	2	3	4	4	6	8	10	14	10	20	40	60	80
Acceleration time t	(ms)	78	91	100	111	72	85	106	136	155	111	154	222	286	364
Acceleration distance s	(mm)	195	228	250	278	123	145	181	231	263	111	154	222	286	364
Acceleration a	(m/s ²)	54	55	50	45	47	40	32	25	22	18	13	9	7	5.5
Travel speed v	(m/s)				5.0	3.4					2.0				
Repeatability ±	(mm)			0.1	0.1				0.1						

With servo motor MSM 040B and DKC controller¹⁾

Connection voltage: 1 x 230 V

Gear reducer ratio		i = 5					i = 10						
Mass m _{ex}	(kg)	2	4	6	8	10	10	15	20	25	30	35	40
Acceleration time t	(ms)	29	35	43	49	55	42	49	58	67	75	85	93
Acceleration distance s	(mm)	30	36	43	49	55	21	25	30	34	38	43	47
Acceleration a	(m/s ²)	68	57	47	40.8	36.2	24	20.4	17.2	14.9	13.3	11.8	10.8
Travel speed v	(m/s)		2										1
Repeatability ±	(mm)		0.1										0.1

1) For more information on motors, controllers and control systems, please refer to the catalogs "ECODRIVE Cs" and "IndraDrive for Linear Motion Systems". These figures do not take the effective torque of the motor-controller combination into account.

Drive data without motor (i = 1)

Drive unit diameter	65.27 mm
Travel speed with sealing strip	to 5 m/s
Mass moment of inertia (short carriage)	(21.1 + L (mm) · 0.00379) · 10 ⁻⁴ kgm ²
Mass moment of inertia (long carriage)	(29.7 + L (mm) · 0.00379) · 10 ⁻⁴ kgm ²

7

Linear Modules for Food & Packaging Components and Ordering Data

	number, length 0 160 20, mm		Guideway	Drive unit	t (Carriage		
Versio	on 			Drive journal	i = 1 1)	i = 1 ²⁾	i=3 i=5 i=10	L _{ca} = 190 mm without slots	L _{ca} = 260 mm without slots	
MA), ir (i = 1)	MA01		01	Journal at right	01	03	-			
With drive unit (MA), without gear reducer $(i = 1)$	MA02		01	Journal at left	01	03	-			
With	MA03		01	Journal on both sides	02	04	-	02	12	
With drive unit, with gear reducer (MG)	MG01	MG02	01	Gear reducer at right/ Gear reducer at left	_	_	10 11 Gear reducer with second shaft end			

Ordering example:

L_{ca} = carriage length

A Please check whether the selected combination is a permissible one (load capacities, moments, maximum speeds, motor data, etc.)!

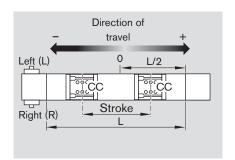
- 1) Without keyway
- 2) With keyway

Ordering data		Description
Option	Option code	
Linear Module and size	MKR 20-80	Linear Module MKR, size 20-80, length 1400 mm
Part number, length	R1140 160 20, 1400 mm	
Version	MG01	With gear reducer at right
Guideway	01	Ball rail system
Drive unit	02	i = 1; Journal on both sides
Carriage	12	Carriage, length L _{ca} = 260 mm without slots, with mounting threads only
Motor attachment	04	Attachment kit with gear reducer for motor MSK 050C, i = 3
Motor	89	Motor MSK 050C with brake
Cover	10	With sealing strip, without longitudinal seals
Documentation	01	Measurement report: standard report

Motor attachment			Motor ⁴⁾		Cover ⁵⁾	Documentation			
			without	with	without	with	Standard Measurement		
i=	kit ³⁾ with gear reducer		В	rake	Sealin	g strip	report	report	
-	00	-		00					
-	00	ı		00		10			
-	00	ı		00		Without longitudinal seals		02 Frictional torque	
-	00	ı		00	00		01	05 Positioning	
i = 3	01							accuracy	
i = 5 $i = 10$	10 20	MSK 040C	86	87					
i=3	02			<u> </u>		15			
i=5	11	MSM 040B	74	75		With longitudinal			
i = 10	21				1	seals			
i = 3	04								
i = 5	14	MSK 050C	88	89					
i = 10	24								

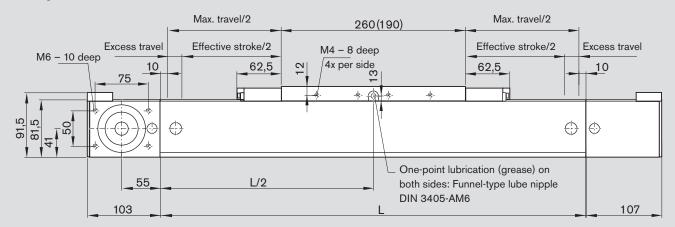
- 3) Attachment kit also available without motor (when ordering: enter "00" for motor).
- 4) Stepping motors on request
- 5) Cover permissible up to

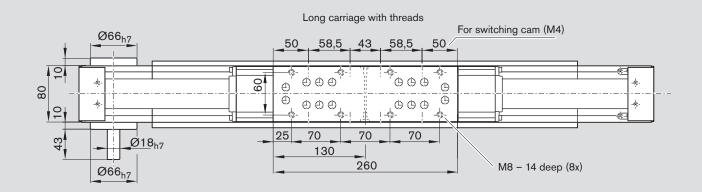
L = 3500 mm

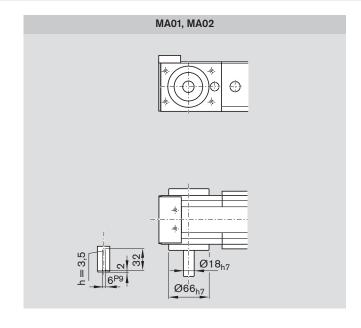

v = 2.5 m/s

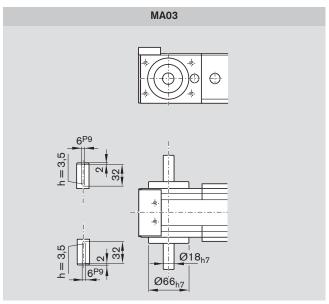
Linear module length:

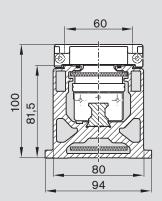
$$L = \text{stroke} + 2 \cdot \text{excess travel} + 20 \text{ mm} + L_{\text{ca}}$$


Stroke = maximum travel of carriage center (CC) between the outermost switch activation points.

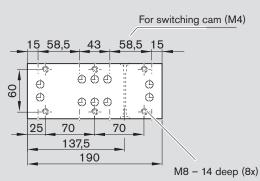

For safe operation, the excess travel must be longer than the braking distance. The acceleration travel can be taken as a guideline value for the braking distance.

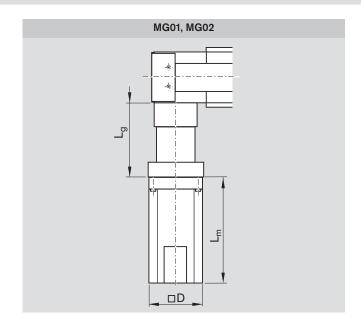



Linear Module for Food & Packaging (MKR 20-80) Dimensions


All dimensions in mm. Drawings not to scale.

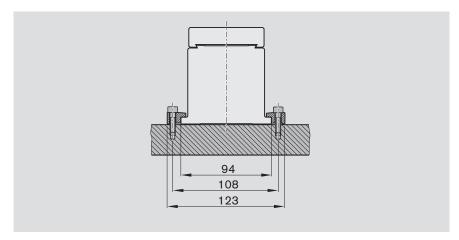






Short carriage with threads

Motor	Dimensions (n Gear reducer L _g MG01 MG02	Motor D	Without brake	L _m With brake
MSK 040C	135	82	185.5	215.5
MSK 050C	145	98	203.0	233.0
MSM 040B	140	80	157.5	191.5

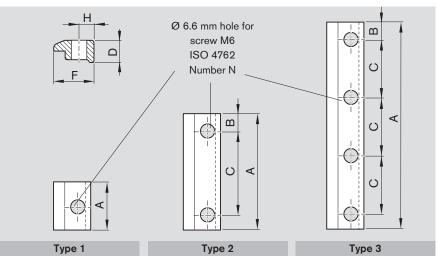

Mounting

General notes

Clamping fixtures

The modules are mounted using clamping fixtures which engage with the flanges on the frame.

⚠ Do not mount or support the Linear Module by the end blocks or end enclosures!

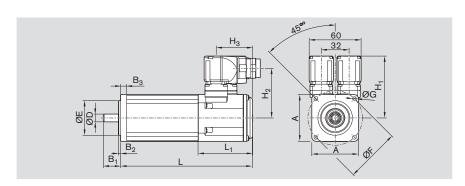

Clamping fixtures

Recommended number of clamping fixtures per meter and side:

- Type 1: 6 pieces
- Type 2: 4 piecesType 3: 3 pieces

Tightening torque

()		M6
8.8	(Nm)	9.5



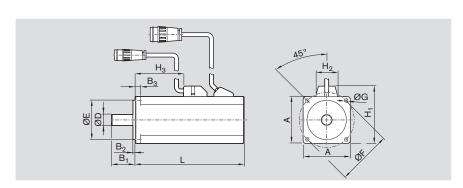
Linear	for	Туре	Number of holes	Dimensio	ns (mm)		Part number			
module										
			N	A	В	С	D	F	Н	
MKR 20-80	M6	1	1	25	_	_	11.5	19.3	7.5	R1175 192 00
		2	2	62	11	40				R1175 192 01
		3	4	142	11	40				R1175 192 02

Motors

AC Servo Motors MSK Notes

All MSK motors have an absolute multiturn encoder. The motors can be supplied complete with controller and control unit. For more information on motors, controllers and control systems, please refer to the catalog "IndraDrive for Linear Motion Systems".

Dimensions


Motor	Dimensi	ons (mn	1)												
	A	B ₁	B_2	B ₃	ØD k6	ØE j6	ØF	ØG	H ₁	H ₂	H ₃	L without brake	L with brake	L ₁	R
MSK 040C	82	30	2.5	8	14	50	95	6.6	83.5	69	31	185.5	215.5	42.5	R8
MSK 050C	98	40	3	9	19	95	115	9	85.5	71	43.5	203	233	55.5	R8

Motor data

Motor		Unit	MSK 040C-0600	MSK 050C-0600
Maximum rotary speed	n _{max}	(min ⁻¹)	5600	5700
Maximum permissible torque	M _{max}	(Nm)	8.1	15
Rated torque	M _N	(Nm)	2.7	5.0
Motor mass moment of inertia	J _m	(10 ⁻⁶ kgm ²)	140	330
Mass without brake	m _m	(kg)	3.6	5.4
Holding brake				
Holding torque	M_{br}	(Nm)	4.0	5.0
Brake mass moment of inertia	J _{br}	(10 ⁻⁶ kgm ²)	23	107
Mass of brake	m _{br}	(kg)	0.32	0.7

AC Servo Motors MSM Notes

All MSM motors have an absolute multiturn encoder. The motors can be supplied complete with controller and control unit. For more information on motors, controllers and control systems, please refer to the catalog "ECODRIVE Cs".

Dimensions

Motor	Dimension	s (mm)											
	Α	B ₁	B_2	B_3	ØD	ØE	ØF	ØG	H ₁	H_2	H₃	L	L
					h6	h7						without	with
												brake	brake
MSM 040B	80	35	3	8	19	70	90	6.0	93	27	76.0	157.5	191.5

Motor data

Motor		Unit	MSM 040B
Maximum rotary speed	n _{max}	(min ⁻¹)	3000
Maximum permissible torque	M _{max}	(Nm)	7.10
Rated torque	M _N	(Nm)	2.40
Motor mass moment of inertia	J _m	(10 ⁻⁶ kgm ²)	67.0
Mass without brake	m _m	(kg)	3.1
Holding brake			
Holding torque	M_{br}	(Nm)	2.45
Brake mass moment of inertia	J _{br}	(10 ⁻⁶ kgm ²)	8.0
Mass of brake	m _{br}	(kg)	0.7

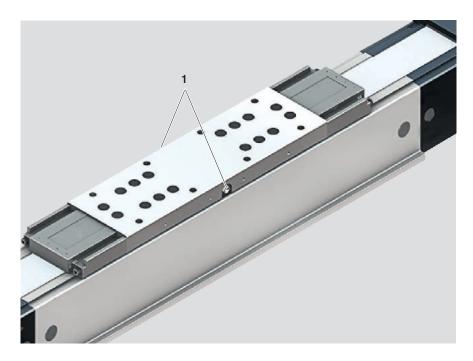
Lubrication

Lubrication notes

Basic lubrication is applied in-factory before shipment.

Linear Modules have been designed for lubrication with grease using a grease gun. The only maintenance required is re-lubrication of the guideway via the funnel-type lube nipples (1).

Lubrication points


1 Funnel-type lube nipple DIN 3405-AM6 for the runner blocks (on both sides, either side can be used).

Recommended lubricants

For lubricant quantities and intervals, see "Mounting Instructions for Linear Modules".

⚠ Do not uses greases containing solid particles (e.g., graphite or MoS₂)

For lubrication in short-stroke applications (< 50 mm), please consult us.

Linear module	Grease DIN 51825			Part number (400 g cartridge)
MKR 20-80	KP2K	NLGI 2	Dynalub 510	R3416 037 00

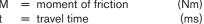
Documentation

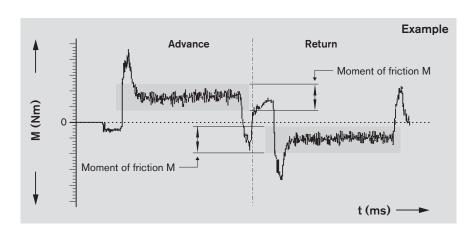
Standard report

Option no. 01

The standard report serves to confirm that the checks listed in the report have been carried out and that the measured values lie within the permissible tolerances.

Checks listed in the standard report:


- functional checks of mechanical components
- functional checks of electrical components
- design is in accordance with order confirmation


Frictional moment of complete system

Option no. 02

The moment of friction M is measured over the entire travel range.

= moment of friction (Nm)

25

0

-25

-50

-75

-100

during positioning.

(mπ) ջ

Example

Positioning accuracy per **VDI/DGQ 3441**

Option no. 05

Measurement points are selected at irregular intervals along the travel range. This allows even periodical deviations δ in μm to be detected during positioning.

Each measurement point is approached several times from both sides.

This gives the following parameters.

$$\begin{array}{lll} \delta & = \mbox{ deviation} & (\mbox{μm}) \\ \mbox{s} & = \mbox{ measured travel} & (\mbox{mm}) \end{array}$$

Positioning accuracy P

The position deviation corresponds to

87,5

The positioning accuracy corresponds

the systematic and random deviations

to the total deviation. It encompasses all

175

252,5

350

the maximum difference arising in the mean values of all the measurement points. It describes systematic deviations.

The reversal range corresponds to the

The position variation range describes the effects of random deviations. It is determined at every measurement point.

The positioning accuracy takes the following characteristic values into consideration:

525

612,5

s (mm)

700

- position deviation
- reversal range

437,5

- position variation range

Reversal range U

Position deviation Pa

difference in mean values of the two approach directions.

systematic deviations.

The reversal range is determined at

every measurement point. It describes

Position variation range Ps

Bosch Rexroth AG Linear Motion and Assembly Technologies Ernst-Sachs-Strasse 100 97424 Schweinfurt, Germany Tel. +49 9721 937-0 Fax +49 9721 937-275 www.boschrexroth.com/brl

Australia

Bosch Rexroth Pty. Ltd. 3 Valediction Road Kings Park, NSW 2148, Sydney Tel. +61 2 9831 7788 Fax +61 2 9831 5553

Great Britain

Bosch Rexroth Limited Cromwell Road St. Neots, Huntingdon Cambs. PE19 2ES Tel. +44 1480 223 298 Fax +44 1480 470 789

Canada

Bosch Rexroth Canada Corp. 3426 Mainway Drive Burlington, Ontario L7M 1A8 Tel. +1 905 335-5511 Fax +1 905 335-4184

USA

Bosch Rexroth Corporation 14001 South Lakes Drive Charlotte, NC 28273 Tel. +1 800 REXROTH +1 800 739 7684 Fax +1 704 583 05231

Singapore

Bosch Rexroth Pte. Ltd. 15D Tuas Road 638520 Singapore Tel. +65 6861 8733 Fax +65 6861 1825

Your sales partner Subject to technical modifications

© Bosch Rexroth AG 2009 Printed in Germany R310EN 2406 (2009.02) EN • BRL/MKT2